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Hypersonic strong-interaction similarity solutions
for flow past a flat plate
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The hypersonic strong-interaction regime for the flow of a viscous, heat-
conducting compressible fluid past a flat plate is analysed using the Navier-Stokes
equations as a basis. It is assumed that the fluid is a perfect gas having constant
specific heats, a constant Prandtl number o, whose numerical value is of order
one, and a viscosity coefficient varying as a power, w, of the absolute temperature.
Limiting forms of solutions are studied as the free-stream Mach number M, the
free-stream Reynolds number based on the plate length £, and the interaction
parameter y = {(yM2)2to/R}}, go to infinity.

Through the use of asymptotic expansions and matching, it is shown that, for
(1—w) > 0, three distinct layers for which similarity exists make up the region
between the shock wave and the plate. The behaviour of the flow in these three
layers is analysed.

1. Introduction

The purpose of this paper is to enlarge upon the existing theory for the hyper-
sonic strong-interaction problem for viscous, compressible flow past a flat plate
(cf. e.g. Stewartson 1964).

According to this strong-interaction theory, the flow field is divided into three
regions: (a) a region extending from the upstream side of a Rankine-Hugoniot
shock wave outwards, where there is a uniform, high-speed flow; (b) a high
temperature, low density, viscous region extending outward from the plate part
of the way to the shock, across which the pressure change is small so that the flow
in this region can be analysed by boundary-layer theory; and (c¢) an inviscid
region, between the clearly defined outer edge of the above viscous boundary
layer and the downstream side of the Rankine-Hugoniot shock wave, for which
the hypersonic small-disturbance theory holds.

The Stewartson solution of this flow problem for w = 1 consists of a similar
solution for the flow in the inviscid shock layer that is joined to the similar solu-
tion for the flow in the viscous boundary layer. Stewartson states, however, that
to make this joining, a slight change in the boundary conditions at the outer edge
of the viscous layer has to be made. It is this need for modification in these
boundary conditions that drew the author’s attention to the strong-interaction
problem. A standard method for overcoming such a difficulty is the introduction
of a layer intermediate to the shock and boundary layers. For w = 1, unfortu-

nately, the intermediate layer is not the answer to the problem. For (1 —w) > 0,
4.2
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however, it is found that, with an intermediate layer, strong-interaction simi-
larity solutions, which do not require modification of the boundary conditions at
the outer edge of the boundary layer, can be obtained. These similarity solutions
for (1 —-w) > 0 are discussed in the following sections.

s

Shock wave———»-7" Inviscid shock layer: = O (8)

Viscous transition layer: = O (8/1)

M>>1,8<<1. M232>>1

= Viscous boundary layer: ¢ = O (83)

.
Z:: Flat plate

FicUrE 1. Schematic diagram of hypersonic strong interaction for flow
past a flat plate.

2. The equations of motion

Consider the (two-dimensional) flow of a viscous, compressible gas past a semi-
infinite flat plate. Let x; = Lx and y; = Ly represent the Cartesian co-ordinates
parallel and normal to the flat plate, respectively, with the origin of this co-
ordinate system at the leading edge of the plate. The length L is chosen so that
2 is of order unity in the region where the strong-interaction theory is valid. The
velocity components in the x;- and y,-directions are u; = 4, u, and v; = %,,v, and
the pressure, temperature, and density are p, = p,p, T} = T,, T, and p; = pop,
where %, o, T, and p,, are the velocity in the x,-direction, pressure, tempera-
ture, and density in the undisturbed region upstream of the flat plate.

The gas is assumed to be a perfect one (p = pT'), having (i) constant specific
heats, ¢, and ¢, , with y = (¢, [c, ), such that (y—1) = O(1), (ii) a constant
Prandtl number of order unity (o = const. = O(1)), and (iii) its ‘normal’
viscosity coefficient proportional to a power, w, of the absolute temperature
(U1 = U pp = B T®, with 1 € w < 1, as will be shown to be required in the suc-
ceeding analysis), while its ‘bulk’ viscosity coefficient is taken to be zero,
although such an assumption is not necessary.

The von Mises forms of the Navier-Stokes equations for the flow of such a gas

are
560400
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where £ = 2 and  is the stream function, defined by

(0¥ [oy) = pu, (0¢[ox) = —pv;

M? = (p,ul|yp,), the square of the free-stream Mach number, and R =
(PoUoo L[ lto), the Reynolds number. The analysis presented here is for M2 > 1
and R; > 1.

3. The inviscid shock layer

According to the existing hypersonic strong-interaction theory for a flat plate,
at the surface there is a thin, viscous, heat-conducting layer, which disturbs the
external flow. This layer, described by y = 6Y,(x), with &, the thickness param-
eter, much less than unity, acts as an effective slender ‘body’, producing an
oblique shock wave, y = 8Y(x) > 6Y,(x), and an inviscid shock layer between
the shock wave and the ‘body’. This inviscid shock layer, in which

OTy(#) < y < 8¥p(2),

satisfies the hypersonic small-disturbance-theory equations. Just such an
inviscid shock layer provides the starting point for the present analysis.

For the inviscid shock layer, in accordance with the work of Van Dyke (1954),
the expansions of the flow variables are carried out in the distorted von Mises

co-ordinates
&= &, 'ﬁh = '#/3 (3.01)
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and have the form
u = 140%uy(E ¥a) +
v = 00, (Ens Yn) +

p = yM22pu (&, ) + -, (3.02)
T = yM*3*Ty(En ¥n) + [

p = puEn )+

Thus, the first-approximation equations of hypersonic small-disturbance
theoryt under the von Mises transformation are

v, 0(1/py)

=0, (3.03)
ph%+ (ag —Pn hgf;”) =0, (3.04)
%%% —0, (3.05)

P g? (7_ 1) % = 0. (3.06)

The Rankine—Hugoniot oblique shock relations determine the boundary con-
ditions for the flow quantities of equation (3.02) at

Yn)sn=Ya(1), or (¥n)a=TFarlén)

(where, for the two-dimensional flow, (¥})., = (¥4)a)- These shock relations in the
distorted von Mises co-ordinates are

20y-1)

(Pr)sh = v+ )

W) (P = 5 (Ler = [ sh(gh)]z

7+1

\ (3.07)
=—2 [V, [

(%n)sn y+1 [ ED? (On)an = y y+1 Yanlén),

taking M?§2 » 1.

Looking for similar solutions to the overall flat-plate problem, it is necessary to
consider similar solutions for the inviscid shock layer. For #2§2 3 1, it is known
that the flow in the inviseid shock layer is self-similar if the shock associated with
this flow is a power-law shock, i.e. (), = @%1 or (¥},) = £%. For such a solution,
the independent variables are

& and & = (Vu/€R), (3.08)

1 The ratios of the orders of magnitude of the leading viscosity and heat-conduction
terms, which have been neglected, to those of the inviscid terms, which have been retained,
is {(yM?)©[R) §4}.5%0+e),

} Note that in physical co-ordinates the equation for the shock shape is (y,); = Waj,
where W is a shape constant. This means that (y);, = (W/L")z", so that the quantity &
for the power-law shock is 6 = (W/L—).
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so that (&,)., = 1. The shock relations indicate that the dependent variables
should be expressed as
P = E2ME(G), T = 72048,
pr = Dy(&), (3.09)
uy = EF2PUE), oy = ER (G-

The equations of motion, with the introduction of equations (3.08) and (3.09),
reduce to

aV, ng,dD,
“h_TonCTh _ o p,=D,0,,
at, Df dg, L
dPp,
Dy, [2(1—n)Uh+nCh%]+ [2(1_n)Ph+n€h%f]+Dh%dﬂ—Z =0,
r (3.10
av,] dp, (3.10)
|-t | = G
d0,] _ (y—1 dp,
Dy [20-m @yt 7t = (Y7 [2-m Bty 2]

The boundary conditions for these equations, from the shock relations, are

B(1) = 2n%/(y+1), Dy(1) = (v+1)/(y—1), 04(1) = 2(y—1)n?/(y+1)?,
0,(1) = —2n%/(y+1), (1) = 2n/(y +1).
For 2 < n < 1, the solution of equations (3.10) and (3.11) yields, as §, >0,
P = ER¥ W+ ..., v, =L+, (3.12)
where F, and V are constants, whose values depend upon the values of y and .
The solutions for p, and 73, as §,— 0 (or ¢, — 0, keeping &, fixed), are
pr = {y+ DIy =1}y + 1) B[22 G-y 4.
= DYl ERy +
Th — (I)O/DO) g};—z(l-—n) C,;Z(l—’n)/ny_l_ .
— @0&;2(1—1&)(7—1)/7110-172(1—70[717 +...,
where D, and 0, are constants that are known once the values of v and » are
prescribed. From equation (3.13), it is clear that one or more layers interior to
the shock layer must be introduced in which p € O(1) and 7 » O(yM2§?), in
order to remove the above singular behaviour as i, - 0.

In the next two sections, the two interior layers that are necessary to remove
this singular behaviour and to complete the description of the flow are described.

} (3.11)

(3.13)

4. The viscous boundary layer

Consider next a viscous boundary layer, a high-temperature, low-density
region, across which the pressure is constant (i.e. p is a function of £ alone), and
at the outer edge of which the flow quantities «, 7, v, and p have the behaviour:
u—>1, (T|yM?)—0, v—> 61", and p—>yM252(—20-"F, where ¥, and F, are
the constants introduced in equation (3.12). This is essentially the viscous layer
studied by Stewartson (1964), et al.
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The expansions for this region are carried out in the distorted co-ordinates

=6 Yp=v/0° (4.01)

and have the form

U=u+..., V=20v+..., = yM25%p,+ ...,
b b p =y M**p, } (4.02)

T=yMTy+..., p=20&pp+....

These are also of the same orders of magnitude as for the viscous layer in the
usual strong-interaction theory.
For these expansions, the leading terms in the equations of motion are

i(i’g)_i( Tb) Py _
oYy \Up 0k \ppp) Oy ’

Wy Lpeg (0D, 0 (u ou)

Yok,  pydE,? Rt [P bazﬁb Ty o)’ { (4.03)
3_%#(7— ) 1 dpr

0&y Y pbdgb

(0 [ (e P (123w (ou:

"B P lo o \Theay,) T\ ) 13 \ay,) |
To retain the viscosity and heat-conduction terms, it is necessary that the
quantity {(yM?)*/R;é*} = A be of O(1), so that

8 = [(yM?°|R, A}~ 0. (4.04)
Combining equation (4.04) with the inequality yM262 > 1 yields
{(yM2y+o[RL}E > 1,

which is the generalization of the usual criterion for strong interaction: that the
interaction parameter, y = M 3/R% for @ =1, be much greater than O(1).
Further, since § € 1 and yM262 > 1, the range of the order of magnitude of R is
M2 ¢ R, <« M**+9), Since L is the measure of x;, it follows that the results
should be valid for M2°(ft.,[p,ts) € Ty € MZEN [P Ue).

The above equations (4.03), satisfying the boundary conditions at the outer
edge Up — 1, Tb—)o, vb—>gb—(l_ﬂ)%a Pr—> gb—Z(l—n)R) as 'ﬁb—>00, (405)
may be reduced to ordinary differential equations if

n =

ieo

(4.06)
Therefore, for n = £, taking the independent variables to be

§ and § = ’ﬁb/gé (4.07)
and taking the dependent variables to be

u=Uy(&), v =&V NG = & *VZ(Q)),}

(4.08)
T, = 0,(8), pp=EXPF = §4F,
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the continuity, momentum, and energy equations become

£ (Al ()2 -

d (U, dv, v, ,
ARG (aytsag, )+ 160,

Ld (0 d0y (o0 G @ d Lyt
AR’[ada(%—wd@b)* 7 )@%—w a,) | T, e\ )®°‘°'

The boundary conditions for these equations at the outer edge and at the wall are

+10, =0,} (4.09)

U,—~1, 0,—-0, V¥, as §—>oo,

} (4.10)
Uy—~0, 0,—>0,,+0, -0, as {—0.

Asyet norequirements have been set for the way in which U, ®,, and ¥, approach
these conditions as {, -0 and {,— 0. A discussion of the solutions of equations
(4.09) and (4.10) is presented in the Appendix.

Since ®,— 0 as §— 0, in order to match with the colder inviscid shock layer,
and U,—~1 as {,— 0, consider the following asymptotic expansions for ®, and

U, as {—~>
O, ~a,n+a,6%+...; O<a; <oy <...,
b lgb Zgb 1 2 } (4.11)

Uy~ 140,85 54+0,8+...; 0< fi<fe<

Substitution of these expansions into the momentum and energy equations of
(4.09) produces the results that, as {, - oo, for (1-w) > 0,

. _[1+w 4AP)o ]1/<1—w> L2
T -0 {l+(1-w) (y-1)f7} S

1—
b= “1[1—0{1+<1—w)<y—1)/y}]’ br=en=1=5

The quantity a, is positive (for (1—w) > 0). The quantity b, is also positive (for
(1—w) > 0), when (1/o) is greater than {1+ (1 —w)(y—1)/y}. A realistic value
for the quantity (1/o) is that given by Eucken (1913), being

(o) = {1+5(y=1/y} > {1+ Q- 0)(y-1)/7}.

Therefore, the temperature; 7} near the outer edge of the viscous boundary
layer (Y, >0, § = &, fixed) is

~ a BRI 2i—0) 4 (4.13)

From a comparison of equations (3.13) and (4.13), it is clear that the functional
behaviour of the temperature in the inviscid shock layer and the viscous boundary
layer as ¥, — 0 and 3, — 0, respectively, does not permit direct matching, and
that a transition layer intermediate to these layers must be introduced in order
that there may be matching.



58 Willvam B. Bush

5. The viscous transition layer

To span the distance between the inviscid shock layer and the viscous boundary
layer, a viscous transition layer is introduced. Subject to verification by matching
of this region to both of the adjacent regions, the distorted co-ordinates and the
expansions for this transition layer are taken to be

§t=§a ¢t=¢/¢t> 63<O(¢1)<3- (5.01)
w=1+6u+.., 2<0@)<]l,
v=20y+.., p=yM*¥%%+.., (5.02)

T = yM26O,T+..., p=(%60)p+...,

with the parameter ¢,¢,/6% taken to be approaching zero.
The leading terms in the equations of motion for this layer are

oy 6,9, 7 (¢t
=005 >0 G =o(5) o

a0 (i =5
o8 " p ok '\ Bpet | \gpore Piay, \Tre5y,)
(5 ) pee = o\ ot ) arors) Prays (s )

& \ v )pog ' o | Bpet | \Fere| oy, \Tay,

From this equation, it can be seen that the normal velocity », and the pressure p
are constant across this transition layer and are the values of these quantities at
the inner edge of the inviscid shock layer (i, > 0). Therefore, for n = §,

v=§1, p=E1FR,. (5.04)
The viscosity and heat-conduction terms are retained if

{(r M2y B, 64} {0%/ 261~} = O(L).

That {(yM?2)°/R;é* = A = O(1) wasrequired in § 4. That {6%/¢261~} = O(1) = 1
remains to be demonstrated. However, if {d/¢? 6]} = 1, it should be noted that
¢,0,/6% = 6’,1’<1+“')—> 0, which was postulated in deriving equation (5.03).

Now consider the possibility of a similar solution for the temperature in the
transition layer. (It is not necessary to consider such a possibility for the
tangential velocity u,.) If the temperature has the form

(5.03)

"

T,=£10(&), with & = /&, (5.05)
then the energy equation may be written as
AF,d (1 do, do, 1 v—1 _
cor i o ag) + a5 () 0o (509

subject to the restriction that, for n = 3,
cs = H1-2(1—w)c,}. (5.07)

First, the asymptotic behaviour of equation (5.06) as {,—>co must be investi-
gated to determine whether or not there is a possibility of matching the transition
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layer temperature to that of the inviseid shock layer. By inspection, it can be
seen that the expansion
0, ~ Kol +0(g e, (5.08)

where ¢ = — 3¢, + (y —1)/2y} and is such that ¢ and {2 —¢(1 —w)} are positive
quantities, represents the solution of equation (5.06) as {;— 0. Thus, in terms of
the stream function 1,

T,~ KEnteenfme as  y,—>o0. (5.09)

But, from the inviscid shock layer (equation (3.13)) for n = %,
T, ~ O LDy as iy, >0, (5.10)

Therefore, from equations (5.09) and (5.10), it is clear that there is matching
between the inviscid shock layer and the viscous transition layer, as ¢, — 0 and

Yo, if 6,p23 = §Ay LIy, (5.11)
K =0, ¢q=2/3y, c;+(2c,/3y)=—(y—1)/2y. (5.12)
Equations (5.07) and (5.12) thus require that the similarity constants, ¢, and
e et Lo o=l
{1 (1-w)/3y}’ 2 4{1-(1—0)/3y}
Also, since ¢ = 2/3y, equation (5.06) simplifies to

For (1-w) > 0, equation (5.14) can be recast as a first-order differential
equation and can be studied more completely by the method of singular points.
To do this, consider the new variables

& dO,

F=wl-ogre, =0z . 5.15
€t t ®t dé} ( )
The mapping equation for these variables is
dg, dF
- == 5.16
¢, " T FGT Eafi- o) (616
and the fundamental equation in the (F, G)-plane is
G _ ~G(1—G)F(1_“)’“—-/1{G+ (2w)/(3Y)} (5.17)
dF Fo{G + (20)/(1 — )} ‘
The isocline of zero slope of this equation is
MG + 2w)/(37)}
(1-o)o — VN \NTTIATLT)
F -6 (5.18)

and the isoclines of infinite slope are the lines

F=0; G=-(2w)/(1-w). (5.19)
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Therefore, the two singular points of the equation, the intersections of the zero-
slope isocline with the infinite-slope isoclines, are

(Foow Gw) = (0: "2(‘)/37),

—0f(1—w) 2 .
e (e e o | I A B
Expressing the variables ' and @ as
Fo=Ff0, G@=-—20)/(1-0)—g,, (5.21)
equation (5.17) near the first singular point is approximately
dg_w_[/\l—u)‘} 1 —]J—g ____[l—a) {1+(2w)/(3y)}]_1_
df 20 {1 - (1—0)/(3y)}] fHe" 3y 1-(1-0)/By)}] fo
(5.22)

The solution of this equation, with ¢, —0 as f,—0, is

@
Jo = const. e~ @+ g% 3 m!Q—+m,
0

m=

]_ — @

(_igf = (.___w) A—wl(l-—w)Ql/(l—w) [const. e~ @4 gty (1+ m)l Q—(2+m)] , (5.23a)
dfcn w m=40

where

3y \I-(1-w)/(37) ©)/(37)}
(5.23b)
In addition, near this singular point, the mapping equation yields
fd) ~ gl—20{1—(1—-0)1(37»/(1—10), i.e_ gl__>w as foo - 0. (5.24)

Thus, in terms of the original variables, the behaviour near this singular point is
O~ & as §—>oo, (5.25)

the asymptotic behaviour already shown to be required for matching to the
inviscid shock layer.

Taking F and G to be
14w 4AF)jo —l(l—w) _ 2w
r= [1 —o{l+(1-0)(y- 1)/7}] —fo G=—7—/+% (526)

the equation near the second singular point is approximately

g, [1+w3]f0 3 [ 20 (1+0)/(37) ] 1 (5.27)

dfy, [1-wFilg, |[1-0 {1-(1-w)/Bn}F

The solution of this equation, with g,— 0 as f;— 0, is

93) dg, (93‘)

70 y 5w = %), 5.28a
9o (Fo fo dfo F, ( )
where

g5 = % ([12—0)w q iI(Jlri))a/»():;’zg’;)y)}] * {[12_0)0) { (—I(J{ 8)({)():;,2/3)7)}]2 8 (it_%) }%) '

(5.28b)
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Near this singular point, the mapping equation yields

Jo ~ & (5.29)

This means that: {— 0as f,—>0if g§ > 0; {,>w as f,—>0if g < 0. In order that
both singular points do not map into the same point in the physical plane, it is
necessary that ¢g¥ be positive. Hence, the relevant root in equation (5.28) is the
positive one. In terms of the original variables, the behaviour near this singular

point becomes O, ~ a, {94 . ag {0, (5.30)

or, Ty~ oy Ep(rfE) 20+ ..,
~ a G POayAl-a 4 a8 Y0,
where this a, is the quantity introduced in equation (4.12).

From a comparison of equations (4.13) and (5.31), it can be seen that the
transition layer does match to the viscous boundary layer, as y;,—0 and

Voo, it 0,470 = (Y209 or (89/g01~) = 1. (5.32)

(5.31)

This is exactly the relation that was required for the retention of the viscosity
and heat-conduction terms in the transition layer equations. Solving equations
(5.11) and (5.32), it is found that

3—(1-w)(3y+1)/3y

¢l = 8‘,17 Jl = T _ — >
2(31 (2;/3 P (5.33)
_ & _ 2By—2)[3y
b= 0% = )y

It is easily verified that §% < ¢, < § and 6% <€ 6, < 1, as was postulated in the
formulation of the transition layer. Finally, the thickness of the transition layer
is determined to be of O(8711722) < 4.

In the above demonstration, that the postulated transition layer matches to
the inviscid shock layer as {;— o0 and matches to the viscous boundary layer as
£~ 0, it has been tacitly assumed that the existence of solutions for the transition
layer temperature, etc., between these limits can be proved. Since the solutions
of the viscous boundary layer do not depend on complete solutions for the flow
guantities in the transition layer, no attempt at such (numerical) solutions has
been made. However, it is possible to show that a solution for the temperature
exists from a study of the phase plane between the points which correspond to
§—~>0and §—> o0, (B, Gy) and (F,,G,,), respectively. The proof is presented for
4 < w < 1. The proof for w = } is not considered here.

The isoclines of infinite slope are the lines

F=F,=0 and G =G;=-(20)/(l-w).

They are denoted as curves A and B, respectively, in figure 2. The expression for
the isocline of zero slope is given by equation (5.18). As far as the region of
interest is concerned, the isocline of zero slope: (i) starts at (¥, ¢,) with a slope
of (—o0); (ii) proceeds with a negative slope until the turning point (£, G,), where
F,. > F, > F,, Gy < G, < G, is reached; and (iii) continues from (F,, G,), with
a positive slope to (0, —co), passing through (F;, Gy). The portion of the isocline
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of zero slope in the region where G > G, is denoted by C in figure 2. Further,
from an examination of equation (5.17), it has been determined that, in the
region bounded by A, B, and C, the shaded region R in figure 2, the slope,
dG/dF, is negative.

Ficure 2. Schematic diagram of the phase plane temperature solution for
the viscous transition layer.

Therefore, the trajectory, which enters region R at (¥, () with a slope of
dGdF = (—g&/F,) < 0, due to the nature of the region and its bounding curves,
is able to leave R only at the point (F,, G.,) with a slope of dG/dF = —c0. Such
a trajectory isthe phase plane solution curve for the transition layer temperature.
It is shown as curve S in figure 2.

6. Conclusions
In §3, it has been shown that the temperature near the inner edge of the
inviscid shock layer is
Ty M?T, ~ 820,50 (yr[8)~287,  (f]d) > 0. (6.01)
In §4, the temperature at the outer edge of the viscous boundary layer, for
Wit = (11T), (1 —w) > 0, has been shown to have the form
Ty fyM?Ty, ~ a, 5509, & = ()6%E) > co. (6.02)

From the above expressions, it is clear that the viscous boundary-layer solution
cannot match directly to the inviscid shock-layer solution. In §5, a viscous
transition layer is introduced, in which the temperature has the form

Ty MPT, ~ 8750, [67E%). (6.03)
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It has been demonstrated that this temperature distribution matches with that
of the inviscid shock layer at the transition layer’s outer edge and with that of
the viscous boundary layer at the transition layer’s inner edge.

With the above as background, consider the solution for w = 1. For w =1,
the temperature at the outer edge of the viscous boundary layer has been shown
(Ladyzhenskii 1963) to have the form

T yM*T, ~ CylyCrexp (—Colf), {—>o0 with C,,C,,Cy = consts, (6.04)

Then, from a comparison of equations (6.01) and (6.04), it follows that, for v = 1
also, the direct matching of the viscous boundary layer and the inviscid shock
layer is not possible.

At first glance, it would seem possible to make the matching complete for
w = 1 by the introduction of a transition layer analogous to the one for (1 — ) > 0.
This is not possible because, for w = 1, the temperature at the outer edge of the
boundary layer goes to zero exponentially, rather than algebraically, and there
is no way to matech directly to exponential decay. Oguchi (1958) claims that this
problem can be overcome by a matching of the zeroth- and first-order boundary-
layer approximations for the temperature to the zeroth-order shock-layer
approximation. However, the author feels that the strong-interaction problem
for w = 1 still represents an area for further investigation.

Appendix Solutions for the viscous boundary layer

The similarity continuity, momentum, and energy equations for the viscous
boundary layer are given in equation (4.09), and the boundary conditions for
these equations are given in equation (4.10).

The solutions of these equations have been found by Dewey (1963) in terms of
different variables. To be able to interpret his results, consider a change of
variables from those employed in this paper (;, Uj,, ®,) to variables similar to
those employed by Dewey (7,f, H), where

= e [ 2 |
"= v o G’ (A 01)

£ = AT (sAR) G, H = U3+ (200, )
where I' = (y—1)/y and H, = (20, ,,/T"). In terms of these new variables, the

momentum and energy equations become
2 2 2
i (%) [ () ] -

7 (A 02)

Vo~ (57) () ) s =

where N = {H,,/[H — (df|dn)*]j*~*. Since
U, = (dfidn) and O, = $TLH - (dfjdn)?,



64 William B. Bush

the boundary conditions for equation (A 02) are

H-H,, (dfldy), f~0, as 7]—>0,} - 0
Ho1, (dfld)—~1, as 7-co.
The wall friction and heat transfer become
[#y(@uyfey)], _ 1 (3T\E[/( 2 )1-0P§<7M2>~]% ﬁ(ﬁ) ,
poy,  ~2\a) M) TR ] el |
[ky(@Ty/oy))w _ 1 (g ire 2 )I—MDO’WMZWTz ﬁ(@)
P, T 4o 41{,) TH, Rz dn ).’
where I= fm [H — (df|dn)?]) d. (A 05)
0

To obtain these expressions, the continuity equation is used. In using this
equation, it is found that, in order to satisfy the boundary conditions, V,— 0 as
7—0, V,—V, as n—c0, the quantity A must be

A = (JTH, Y~ By(4¥;/3T1)2, (A 06)

The values of (d%f/dy?),, (dH|[dy),/(1—H,), and I for v = 1-4 and different
values of w, o, and H,, are given in Dewey’s paper. From equation (A 04) and
Dewey’s values, it is clear that the greatest effect on the wall friction and heat
transfer, due to  being less than unity, comes from the M#v-term, since the
variation in the other terms is relatively negligible.

The author would like to express his thanks to Drs J.D.Cole, J. Aroesty,
C.F.Dewey and R.E.Kaplan for their helpful suggestions and kind advice
during the preparation of this paper.
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