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Hypersonic strong-interaction similarity solutions 
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The hypersonic strong-interaction regime for the flow of a viscous, heat- 
conducting compressible fluid past a flat plate is analysed using the Navier-Stokes 
equations as a basis. It is assumed that the fluid is a perfect gas having constant 
specific heats, a constant Prandtl number CT, whose numerical value is of order 
one, and a viscosity coefficient varying as a power, w ,  of the absolute temperature. 
Limiting forms of solutions are studied as the free-stream Mach number M ,  the 
free-stream Reynolds number based on the plate length R,, and the interaction 
parameter x = {(yMz))"+~/RL)+,  go to infinity. 

Through the use of asymptotic expansions and matching, it is shown that, for 
(1 - w )  > 0, three distinct layers for which similarity exists make up the region 
between the shock wave and the plate. The behaviour of the flow in these three 
layers is analysed. 

1. Introduction 
The purpose of this paper is to enlarge upon the existing theory for the hyper- 

sonic strong-interaction problem for viscous, compressible flow past a flat plate 
(cf. e.g. Stewartson 1964). 

According to this strong-interaction theory, the flow field is divided into three 
regions: (u) a region extending from the upstream side of a Rankine-Hugoniot 
shock wave outwards, where there is a uniform, high-speed flow; (b )  a high 
temperature, low density, viscous region extending outward from the plate part 
of the way to the shock, across which the pressure change is small so that the flow 
in this region can be analysed by boundary-layer theory; and (c) an inviscid 
region, between the clearly defined outer edge of the above viscous boundary 
layer and the downstream side of the Rankine-Hugoniot shock wave, for which 
the hypersonic small-disturbance theory holds. 

The Stewartson solution of this flow problem for w = 1 consists of a similar 
solution for the flow in the inviscid shock layer that is joined to the similar solu- 
tion for the flow in the viscous boundary layer. Stewartson states, however, that 
to make this joining, a slight change in the boundary conditions at  the outer edge 
of the viscous layer has t o  be made. It is this need for modification in these 
boundary conditions that drew the author's attention to  the strong-interaction 
problem. A standard method for overcoming such a difficulty is the introduction 
of a layer intermediate to the shock and boundary layers. For w = 1, unfortu- 
nately, the intermediate layer is not the answer to the problem. For (1 - w )  > 0, 
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however, it  is found that, with an intermediate layer, strong-interacbion simi- 
larity solutions, which do not require modification of the boundary conditions a t  
the outer edge of the boundary layer, can be obtained. These similarity solutions 
for (1 - w )  > 0 are discussed in the following sections. 

YI8 
A 

Viscous transition layer : jb = 0 (Vl) 

M>>l, b 4. Wa2>>1 
rs Viscous boundary layer : $ = 0 (J3) 

FIGURE 1. Schematic diagram of hypersonic strong interaction for flow 
past a flat plate. 

2. The equations of motion 
Consider the (two-dimensional) flow of a viscous, compressible gas past a semi- 

infinite flat plate. Let x1 = Lx and y1 = Ly represent the Cartesian co-ordinates 
parallel and normal to the flat plate, respectively, with the origin of this co- 
ordinate system at the leading edge of the plate. The length L is chosen so that 
x is of order unity in the region where the strong-interaction theory is valid. The 
velocity components in the xl- and y,-directions are u1 = u,u, and w1 = u,v, and 
the pressure, temperature, and density are p ,  = p m p ,  Tl = T, T ,  and p1 = pmp, 
where u,, p,, T,, and pa are the velocity in the x,-direction, pressure, tempera- 
ture, and density in the undisturbed region upstream of the flat plate. 

The gas is assumed to be a perfect one ( p  = pT),  having (i) constant specific 
heats, cV1 and cpl, with y = (cpl/cVl), such that (7- 1) = 0(1) ,  (ii) a constant 
Prandtl number of order unity ((T = const. = O ( l ) ) ,  and (iii) its 'normal' 
viscosity coefficient proportional to a power, w ,  of the absolute temperature 
(p, = pmp = pmTu, with + 6 w < 1, as will be shown to be required in the suc- 
ceeding analysis), while its 'bulk' viscosity coefficient is taken to be zero, 
although such an assumption is not necessary. 

The von Mises forms of the Navier-Stokes equations for the flow of such a gas 
are 

(2.01) 
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x T" PU-+ --Pu- , (2 .03)  [ { ; (: 3111 

where = x and g5 is the stream function, defined by 

( a w y )  = PU, (ag5lax) = -pv; 

M2 = (pmuZ/ypm), the square of the free-stream Mach number, and R, = 

(pmumL/pm), the Reynolds number. The analysis presented here is for M 2  % 1 
and RL % 1. 

3. The inviscid shock layer 
According to the existing hypersonic strong-interaction theory for a flat plate, 

at the surface there is a thin, viscous, heat-conducting layer, which disturbs the 
external flow. This layer, described by y = 6Yb(x), with 6, the thickness param- 
eter, much less than unity, acts as an effective slender 'body', producing an 
oblique shock wave, y = 6qh(z) > 6Yb(x), and an inviscid shock layer between 
the shock wave and the 'body'. This inviscid shock layer, in which 

6y,(x) < y < 6y,,(x), 
satisfies the hypersonic small-disturbance-theory equations. Just such an 
inviscid shock layer provides the starting point for the present analysis. 

For the inviscid shock layer, in accordance with the work of Van Dyke (1954), 
the expansions of the flow variables are carried out in the distorted von Mises 

(3.01) 



(3.02) 

Thus, the first-approximation equations of hypersonic small-disturbance 
theory? under the von Mises transformation are 

(3.03) 

(3.04) 

(3.05) 

(3.06) 

The Rankine-Hugoniot oblique shock relations determine the boundary con- 
ditions for the flow quantities of equation (3.02) at 

(Yh)sh= %h(%), Or ($h)sh=ysh(chh) 

(where, for the two-dimensional flow, ($h)& = (Yh)&). These shock relations in the 
distorted von Mises co-ordinates are 

taking M262 > 1. 
Looking for similar solutions to the overall flat-plate problem, it is necessary to 

consider similar solutions for the inviscid shock layer. For M2S2 >> 1, i t  is known 
that the flow in the inviscid shock layer is self-similar if the shock associated with 
this flow is a power-law shock, i.e. (Yh)& = x f f l  or ($& = (2. For such a solution, 
the independent variables are 

6 h  and 6 =  ( $ h / t Z ) ,  (3.08) 

t The ratios of the orders of magnitude of the leading viscosity and heat-conduction 
terms, which have been neglected, to those of the inviscid terms, which have been retained, 
is {(y2C/2)"/RLS4}. S2'1+~'. 

'$ Note that in physical co-ordinates the equation for the shock shape is (yl)sh = Wx;, 
where W is a shape constant. This means that ( ~ ) ~ h  = (W/L1-n)xn, so that the quantity S 
for the power-law shock is 6 = ( n7/L1-"). 
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so that (<& = 1. The shock relations indicate that the dependent variables 
should be expressed as 

(3.09) I p h  = [c2(1--n)Ph(ch), 

Ph = D h ( d ) t  

Th = &2(1-")@ h(ch) ,  

uh = Etz(l--n)uh(<h), vh = [h(l--n)K(ch). 

The equations of motion, with the introduction of equations (3.08) and (3.09), 
reduce to 

The boundary conditions for these equations, from the shock relations, are 

ph(l)  = 2n2/ (y+ '), D h ( l )  = (y+  ' ) / ( y - ' ) )  @It(') = 2(y-11)n2/(y+ ')', (3.11) 

C i , ( l )  = - 2n2/ (y+ l ) ,  K(l) = 2 n / ( y +  1).  I 
For $ < n < 1,  the solution of equations (3.10) and (3.11) yields, as 6+0, 

ph = [h2(1-n)P0 f e . .  3 vh = ci(l-n)& f . . + (3.12) 

where Po and V, are constants, whose values depend upon the values of y and n. 
The solutions for Ph and Th, as <h+o (or $h+o) keeping [h fixed), are 

Ph = [ { (y+ I)/(?- 1)}{(yf 1)PO/2?22}1'r]~~(1-n)inr+ * * * ~  

(3.13) 1 = Do($r, / (~)2(1-")~n~ + . . ., 
Th = (po/Do) (~Z(1 -n)  &2(1-n)lny + . . . 
- @ [-2(l--n)tr-l)/r$~2(l-n)iny + . . . , 

o h  - 

where Do and 0, are constants that are known once the values of y and n are 
prescribed. From equation (3.13), it  is clear that one or more layers interior to  
the shock layer must be introduced in which p < O(1)  and T 9 O(yM2a2), in 
order to remove the above singular behaviour as $h -+ 0. 

In  the next two sections, the two interior layers that are necessary to remove 
this singular behaviour and to complete the description of the flow are described. 

4. The viscous boundary layer 
Consider next a viscous boundary layer, a high-temperature, low-density 

region, across which the pressure is constant (i.e. p is a function of [ alone), and 
a t  the outer edge of which the flow quantities u, T ,  v, and p have the behaviour : 
u --f 1, (T/yM2) --f 0 ,  w + 8[-(lUfi)q, and p += Y M ~ ~ ~ ( - ~ ( ~ - ~ ) P , , ,  where V, and Po are 
the constants introduced in equation (3.12). This is essentially the viscous layer 
studied by Stewartson (1964),  et al. 
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The expansions for this region are carried out in the distorted co-ordinates 

6 b  = 6,  $b = $/&' 
and have the form 

(4.01) 

These are also of the same orders of magnitude as for the viscous layer in the 
usual strong-interaction theory. 

For these expansions, the leading terms in the equations of motion are 

(4.03) 

To retain the viscosity and heat-conduction terms, it is necessary that the 
quantity {(rM2)u/RL84} I A be of O ( l ) ,  so that 

6 = [ ( ~ M ~ ) @ / R , A ] ~ + O .  (4.04) 

Combining equation (4.04) with the inequality yM26* 9 1 yields 

{ ( ~ M ~ ) ~ + ~ / R , ) B  % 1, 

which is the generalization of the usual criterion for strong interaction: that the 
interaction parameter, x = M3/Rh for w = 1, be much greater than O ( 1 ) .  
Further, since 6 < 1 and yM262 9 1, the range of the order of magnitude of RL is 
M2w .g RL < M2(2+w). Since L is the measure of xl, it  follows that the results 
should be valid for M2@(p, /p ,  u,) < XI < ~ 2 ( 2 + " ) ( ~ m / p m  Urn). 

The above equations (4.03), satisfying the boundary conditions at the outer 
edge 

may be reduced to ordinary differential equations if 

U b - - f l ,  T b - t O ,  ~ b ~ & ( l - m ~ & ,  pb-f<b2(1--n)P0 8s @ b - f w ,  (4.05) 

n = 2. (4.06) 

Therefore, for n = 8 ,  taking the independent variables to be 

gb  and cb = $b/&, (4.07) 

and taking the dependent variables to be 

(4.08) 
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the continuity, momentum, and energy equations become 

57 

The boundary conditions for these equations at  the outer edge and a t  the wall are 

As yet no requirements have been set for the way in which u b ,  @b, and V, approach 
these conditions as &, -+ 00 and c b  --f 0. A discussion of the solutions of equations 
(4.09) and (4.10) is presented in the Appendix. 

Since 0, -+ 0 as c b  -+ 00, in order to match with the colder inviscid shock layer, 
and u b  -+ 1 as -+ co, consider the following asymptotic expansions for 0, and 
u b  as c b  --f a 

(4.11) 1 0, N alcgai+a2c<az+...; 0 < a, < a2 < ..., 
Ub N 1 + b,cc:,-81+ b,c<Pz+ ...; 0 < /3, < Pz < .... 

Substitution of these expansions into the momentum and energy equations of 
(4.09) produces the results that, as cb+a ,  for (1  - w )  > 0, 

lI(1-u) 2 
1 -  1-w' 

(4.13) 
2 , /3,=a,=- ' 1 1-W' I 1--w 

The quantity a, is positive (for (1 - w )  > 0). The quantity b, is also positive (for 
(1 - w )  > O ) ,  when (l/r) is greater than (1 + (1 - w )  (y - l)/y}. A realistic value 
for the quantity (l/r) is that given by Eucken (1913), being 

(1/4 = {1+:(Y-l)/Y) > {1+(1 -4 (Y-1) /7} .  

Therefore, the temperatureiT, near the outer edge of the viscous boundary 
layer ($b -+ co, l j  = ljb fixed) is 

Tb - allj~12(1-~)$g21(1-~) + . . . . (4.13) 

From a comparison of equations (3.13) and (4.13), it is clear that the functional 
behaviour of the temperature in the inviscid shock layer and the viscous boundary 
layer as $h-+O and 11.,+co, respectively, does not permit direct matching, and 
that a transition layer intermediate to these layers must be introduced in order 
that there may be matching. 
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5. The viscous transition layer 
To span the distance between the inviscid shock layer and the viscous boundary 

layer, a viscous transition layer is introduced. Subject to verification by matching 
of this region to both of the adjacent regions, the distorted co-ordinates and the 
expansions for this transition layer are taken to be 

Et = '5, $t = $194, S3 < O($,) < 6. (5.01) 

(5.02) i 
u =  i+e,ut+ ..., d2<o(el)< 1, 

v = Svt+ ..., 
T = yM20tT,+ ..., 

p = YM2Szpt+ ..., 
p = (d2/Ot)pt+ ..., 

with the parameter 0, 4t/63 taken to be approaching zero. 
The leading terms in the equations of motion for this layer are 

(5.03) 1 
From this equation, it can be seen that the normal velocity vt and the pressure p 
are constant across this transition layer and are the values of these quantities at 
the inner edge of the inviscid shock layer ($h+ 0). Therefore, for n = 2, 

v, = &-q, pt = &&Po. 
The viscosity and heat-conduction terms are retained if 

(5.04) 

((yM2)"/R,S4} {a6/@ O;-"} = O( 1). 

That ((yM2)"/RLS4} = A = O(1) wasrequiredin $4.  That {S6/q5:O:-m} = O(1) = 1 
remains to be demonstrated. However, if {S6/@O:-~} = 1, it  should be noted that 
$#,/S3 = O$l+")+ 0 ,  which was postulated in deriving equation (5.03). 

Now consider the possibility of a similar solution for the temperature in the 
transition layer. (It is not necessary to consider such a possibility for the 
tangential velocity ut.) If the temperature has the form 

Tt = & @t(Ct), with ct = $t/& (5.05) 

then the energy equation may be written as 

(5.06) 

subject to the restriction that, for n = Q ,  

c2 = ~{l-2(1-U)C1}. (5.07) 

First, the asymptotic behaviour of equation (5.06) as ct+co must be investi- 
gated to determine whether or not there is a possibility of matching the transition 
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layer temperature to that of the inviscid shock layer. By inspection, i t  can be 
seen that the expansion 

0, N K p [ l  + 0(&,-@-~(1-49], (5.08) 

where p = -$(cl+ (7- 1)/27) and is such that (I and (2-q(1-w)} are positive 
quantities, represents the solution of equation (5.06) as ~,+co. Thus, in terms of 
the stream function $i, 

T, N K&fQct9$p as $,+a. (5.09) 

But, from the inviscid shock layer (equation (3.13)) for n = f, 

Th - 0 o h  5 - ( 7 - 1 ) / 2 ~ 9 $ ~ 2 b '  as 9$?,+ 0. (5.10) 

Therefore, from equations (5.09) and (5.10), it  is clear that there is matching 
between the inviscid shock layer and the viscous transition layer, as 9$h + 0 and 

0 42/37 = p ( 3 7 + 1 ) / 3 ~ ,  (5.11) $, + 00, if 

K = 0 0 ,  q = 2/37, CI + ( 2 ~ , / 3 ~ )  = - (7- 1)/27. (5.12) 

Equations (5.07) and (5.12) thus require that the similarity constants, c1 and 

t €  

(5.13) 
c2, be 7-8 1 + (1 - w )  (7 - 1)/7 

c1 = - 2y{l-  (1 - w ) / S i }  ' " =  4{1-( l -o) /3y} . 
Also, since p = 2/37, equation (5.06) simplifies to 

(5.14) 

For (1-0)  > 0, equation (5.14) can be recast as a first-order differential 
equation and can be studied more completely by the method of singular points. 
To do this, consider the new variables 

The mapping equation for these variables is 

and the fundamental equation in the (P, G)-plane is 

dG 
dF-- 

G( 1 - G) F(l-W)JO - h{G + ( 2 ~ ) /  (37)) - 
F y G  + ( 2 w ) / (  1 - w)> 

The isocline of zero slope of this equation is 

and the isoclines of infinite slope are the lines 

F = 0; G = - ( 2 ~ ) / ( 1 - ~ ) .  

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 
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Therefore, the two singular points of the equation, the intersections of the zero- 
slope isocline with the infinite-slope isoclines, are 

(Fm, G,) = (0 ,  - 2 ~ / 3 y ) ;  

(5.20) 
1-W 

l + W  4RPO/g 
( F o 7  

= ( [ E { l +  (1 - W )  (y-  l)/y) 

Expressing the variables F and G as 

P m  = f a 7  G = - ( 2 w ) / ( l - ~ ) - g m 7  (5.21) 

equation (5.17) near the first singular point is approximately 

1 - W  {1+(24/(3Y))  
37 (1 - (1 - W)/(3Y)} f m  * 

(5.22) 
1 dg, 1-w: 1 

m dfoo - [h qi{ 1 - ( 1 - o)/( 37)) f $w 

The solution of this equation, with g, -+ 0 as f, -+ 0, is 
m 

m= 0 
gm = const. e-Q + g z  C m! Q-(l+m), 

where 

In addition, near this singular point, the mapping equation yields 

f W ~ ~ Z ~ { l - ( l - ~ ) l ( 3 ~ ) ) / ( 1 ~ ) ,  i.e. &-too as fm-+ 0. (5.24) 

Thus, in terms of the original variables, the behaviour near this singular point is 

ot N p 3 3 Y  as &-too, (5 .25)  

the asymptotic behaviour already shown to be required for matching to the 
inviscid shock layer. 

Taking P and G to be 

the equation near the second singular point is approximately 

(5.27) 

The solution of this equation, with go -+ 0 as f o  --f 0 ,  is 

(5.28 a )  

where 

-- (1 + 4 ( 3 r ) 1 2  +8  (1 - +u)y) 
{ l - ( l - w ) / ( 3 ~ ) }  1--0 

(5 .28b)  
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Near this singular point, the mapping equation yields 

fo CP. (5.29) 

This means that: C,+O as f O + O  if g,* > 0; &-+a as f o + O  if g,* < 0. In  order that 
both singular points do not map into the same point in the physical plane, it  is 
necessary that gg be positive. Hence, the relevant root in equation (5.28) is the 
positive one. In  terms of the original variables, the behaviour near this singular 

0, al~~zl( l -d+ ... as Q+O,  (5.30) 
point becomes 

(5.31) 
or , I Ti N U, &( $t/&)-'I('-u) + . . . , 

,., a,c;/W-w) $c zI( l -~)  + . . . as Il.t+o, 
where this a, is the quantity introduced in equation (4.12). 

From a comparison of equations (4.13) and (5.31), it can be seen that the 
transition layer does match to the viscous boundary layer, as Ilr,-+O and 
$b -+ 00, if (5.32) 

This is exactly the relation that was required for the retention of the viscosity 
and heat-conduction terms in the transition layer equations. Solving equations 
(5.11) and (5.32), it  is found that 

It is easily verified that 63 < g5t < 6 and 6 2  < 0, < 1, as was postulated in the 
formulation of the transition layer. Finally, the thickness of the transition layer 
is determined to be of 0(6J1+Ja-a) < 6. 

In  the above demonstration, that the postulated transition layer matches to 
the inviscid shock layer as C, + co and matches to the viscous boundary layer as 
<,-.O, it  has been tacitlyassumedthat the existence of solutions for the transition 
layer temperature, etc., between these limits can be proved. Since the solutions 
of the viscous boundary layer do not depend on complete solutions for the flow 
quantities in the transition layer, no attempt at such (numerical) solutions has 
been made. However, it is possible to show that a solution for the temperature 
exists from a study of the phase plane between the points which correspond to 
&,-to and ~,-+oo, (Po, Go) and (Fa, G,), respectively. The proof is presented for 
4 c o < 1. The proof for w = & is not considered here. 

The isoclines of infinite slope are the lines 

F = F,=O and G = Go = - (2w)/( l -w).  

They are denoted as curves A and B, respectively, in figure 2. The expression for 
the isocline of zero slope is given by equation (5.18). As far as the region of 
interest is concerned, the isocline of zero slope: (i) starts at (Fa, G,) with a slope 
of ( -00);  (ii) proceeds with a negative slope until the turning point (Fr, G,.), where 
Fr > Po > Fm, Go < G,, c G,, is reached; and (iii) continues from (Fr,Gr), with 
a positive slope to (0, - m), passing through (Po, Go). The portion of the isocline 
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of zero slope in the region where G > Go is denoted by C in figure 2. Further, 
from an examination of equation (5.17)) it  has been determined that, in the 
region bounded by A, B, and C, the shaded region R in figure 2, the slope, 
dG/dF, is negative. 

G 
b 

FIGURE 2. Schematic diagram of the phase plane temperature solution for 
the viscous transition layer. 

Therefore, the trajectory, which enters region R at  (Fo, Go) with a slope of 
dG/dP = ( - gi/Fo) < 0, due to the nature of the region and its bounding curves, 
is able to leave R only at the point (Fm, G,) with a slope of dGldF = - co. Such 
a trajectoryis the phase plane solution curve for the transition layer temperature. 
It is shown as curve S in figure 2 .  

6. Conclusions 

inviscid shock layer is 
In  $3,  it has been shown that the temperature near the inner edge of the 

T,/yM2T, - S2OO&--(~--l)~'Y ($/S)-2'37, ($/S) + 0. (6.01) 

In $4, the temperature a t  the outer edge of the viscous boundary layer, for 
,ul/pm = (Tl/T,)w, (1  - w )  > 0 ,  has been shown to have the form 

T1lrH", - a1 &21(1-u), Q = ($/S3&*)-tW. (6.02) 

From the above expressions, it  is clear that the viscous boundary-layer solution 
cannot match directly to the inviscid shock-layer solution. In  $ 5 ,  a viscous 
transition layer is introduced, in which the temperature has the form 

T1/yH2T, - SJz.p;"lO,($/SJ1@). (6.03) 
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It has been demonstrated that this temperature distribution matches with that 
of the inviscid shock layer a t  the transition layer's outer edge and with that of 
the viscous boundary layer at the transition layer's inner edge. 

With the above as background, consider the solution for w = 1. For w = 1, 
the temperature at the outer edge of the viscous boundary layer has been shown 
(Ladyzhenskii 1963) to have the form 

Tl/yM2Tm N CS<Cc1exp ( - C 2 ~ ~ ) ,  ~ , + m  with Cl,C2,C, = consts. (6.04) 

Then, from a comparison of equations (6.01) and (6.04), it follows that, for w = 1 
also, the direct matching of the viscous boundary layer and the inviscid shock 
layer is not possible. 

At first glance, it would seem possible to make the matching complete for 
w = 1 by the introduction of a transition layer analogous to the one for (1 - w )  > 0. 
This is not possible because, for w = 1, the temperature at  the outer edge of the 
boundary layer goes to zero exponentially, rather than algebraically, and there 
is no way to match directly to exponential decay. Oguchi (1958) claims that this 
problem can be overcome by a matching of the zeroth- and first-order boundary- 
layer approximations for the temperature to the zeroth-order shock-layer 
approximation. However, the author feels that the strong-interaction problem 
for w = 1 still represents an area for further investigation. 

Solutions for the viscous boundary layer Appendix 

The similarity continuity, momentum, and energy equations for the viscous 
boundary layer are given in equation (4.09), and the boundary conditions for 
these equations are given in equation (4.10). 

The solutions of these equations have been found by Dewey (1963) in terms of 
different variables. To be able to interpret his results, consider a change of 
variables from those employed in this paper (Q, U,, 0,) to variables similar to 
those employed by Dewey (7, f, H ) ,  where 

f= [(~I'H,)1-w(l/4AP,)]~<,, H = U;+(2/I ' )@, , f  

where I' = (y -  l)/r and H, = (20&F). In  terms of these new variables, the 
momentum and energy equations become 

where N = (H,/[H - (df/d7)2])1-u. Since 

U, = (df/dy) and 0, = Br[H - (df/d~)~], 



64 William B. Bush 

the boundary conditions for equation (A 02) are 

The wall friction and heat transfer become 

where 

To obtain these expressions, the continuity equation is used. In  using this 
equation, it is found that, in order to satisfy the boundary conditions, V,-+ 0 as 
y + 0, V, + V, as y +GO, the quantity A must be 

A = (gr~,)1-"~,(4~/3r1)2. (A 06) 

The values of ( d 2 f l d ~ 2 ) ~ ,  (dH/dy) , / ( l -  Hw), and I for y = 1.4 and different 
values of w ,  O-, and Hw are given in Dewey's paper. Prom equation (A04) and 
Dewey's values, it  is clear that the greatest effect on the wall friction and heat 
transfer, due t o  w being less than unity, comes from the H*@-term, since the 
variation in the other terms is relatively negligible. 

The author would like to express his thanks to Drs J.D.Cole, J.Aroesty, 
C. F. Dewey and R. E. Kaplan €or their helpful suggestions and kind advice 
during the preparation of this paper. 
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